Exercise 32

How fast is the angle between the ladder and the ground changing in Example 2 when the bottom of the ladder is 6 ft from the wall?

Solution

In Example 2 there's a 10 -foot ladder that's leaning against a wall and sliding on the ground at a rate of $1 \mathrm{ft} / \mathrm{s}$.

Since we want to know $d \theta / d t$ when $x=6$, use trigonometry to relate the angle with the known sides of the triangle.

$$
\cos \theta=\frac{x}{10}
$$

Take the derivative of both sides with respect to t by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(\cos \theta) & =\frac{d}{d t}\left(\frac{x}{10}\right) \\
(-\sin \theta) \cdot \frac{d \theta}{d t} & =\frac{1}{10} \cdot \frac{d x}{d t} \\
\left(-\frac{y}{10}\right) \cdot \frac{d \theta}{d t} & =\frac{1}{10} \cdot(1)
\end{aligned}
$$

Solve for $d \theta / d t$.

$$
\begin{aligned}
\frac{d \theta}{d t} & =-\frac{1}{y} \\
& =-\frac{1}{\sqrt{10^{2}-x^{2}}}
\end{aligned}
$$

Therefore, the rate of change of the angle when the bottom of the ladder is 6 feet from the wall is

$$
\left.\frac{d \theta}{d t}\right|_{x=6}=-\frac{1}{\sqrt{10^{2}-(6)^{2}}}=-\frac{1}{8} \frac{\text { radians }}{\text { second }}=-0.125 \frac{\text { radians }}{\text { second }} .
$$

